Converting NFAs to DFAs Lecture 7 Section 2.3

Robb T. Koether
Hampden-Sydney College
Wed, Sep 7, 2016

Outline

(9) Building a DFA from an NFA
(2) Examples
(3) Assignment

Outline

(9) Building a DFA from an NFA
(2) Examples
(3) Assignment

The Algorithm

- We will convert a DFA $M=\left\{Q, \Sigma, \delta, q_{0}, F\right\}$ to an NFA $M^{\prime}=\left\{Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\}$, where
- $Q^{\prime}=\mathcal{P}(Q)$
- $\Sigma^{\prime}=\Sigma$
- $F^{\prime}=\{S \subseteq Q \mid S \cap F \neq \varnothing\}$
- The start state q_{0}^{\prime} and the function $\delta^{\prime}: \mathcal{P}(Q) \rightarrow \mathcal{P}(Q)$ will be described next.

The Algorithm

Definition (λ-Closure)

The λ-closure of a state q, denoted $\mathrm{Cl}(q)$, is the set of all states reachable from q by using only λ-moves. The state q itself is automatically included in $\mathrm{Cl}(q)$.

Definition (λ-Closure of a Set)

The λ-closure of a set S to be $\mathrm{Cl}(S)=\bigcup_{x \in S} \mathrm{Cl}(x)$.

The Algorithm

- The start state of M^{\prime} is $q_{0}^{\prime}=\mathrm{Cl}\left(q_{0}\right)$.
- For any state $S \in \mathcal{P}(Q)$ and for any $a \in \Sigma$, define

$$
\delta^{\prime}(S)=\bigcup_{q \in S} \operatorname{Cl}(\delta(q, a))
$$

Outline

(1) Building a DFA from an NFA

(2) Examples
(3) Assignment

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.
- Convert the NFA that accepts $L_{1} L_{2}$ to a DFA.

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.
- Convert the NFA that accepts $L_{1} L_{2}$ to a DFA.
- In the last example, process ababb, abaabb, and aababb.

Example

Example (Even Number of a's and b's)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Let $L_{1}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of a's $\}$.
- Let $L_{2}=\left\{w \in \Sigma^{*} \mid w\right.$ contains an even number of b's $\}$.
- Convert the NFA that accepts $L_{1} \cup L_{2}$ to a DFA.
- Convert the NFA that accepts $L_{1} L_{2}$ to a DFA.
- In the last example, process ababb, abaabb, and aababb.
- Describe the language $\overline{L_{1}}$.

Outline

(1) Building a DFA from an NFA

(2) Examples
(3) Assignment

Assignment

Assignment

- Section 2.2 Exercises 19, 23
- Section 2.3 Exercises 3, 4, 5, 7, 9, 10, 16.

